
Elementary excitations for the one-dimensional Hubbard model at finite temperatures

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys.: Condens. Matter 9 5837

(http://iopscience.iop.org/0953-8984/9/27/014)

Download details:

IP Address: 171.66.16.207

The article was downloaded on 14/05/2010 at 09:06

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/9/27
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter9 (1997) 5837–5851. Printed in the UK PII: S0953-8984(97)79975-2

Elementary excitations for the one-dimensional Hubbard
model at finite temperatures

A Tomiyama, S Suga and A Okiji†
Department of Applied Physics, Osaka University, Suita, Osaka 565, Japan
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Abstract. The elementary excitations for the one-dimensional Hubbard model at finite
temperatures are studied with the use of the Bethe ansatz solution. The formulation is based
on the method of Yang and Yang, which was developed for the one-dimensional boson systems
with the δ-function type interaction. The dispersion relations and the excitation spectrums are
obtained numerically for the charge and the spin degrees of freedom.

1. Introduction

Low-dimensional correlated electron systems have been studied intensively in recent years.
In particular, metallic states close to the Mott insulator have attracted much interest. The
one-dimensional (1D) Hubbard model is considered to be one of the fundamental models to
describe both the quantum fluctuation and the metal–insulator transition in low-dimensional
correlated electron systems, and is exactly solvable by means of the Bethe ansatz [1].
Various properties of the model, such as the ground-state properties, elementary excitations
at zero temperature and thermodynamics have been investigated with the use of the Bethe
ansatz solution [2]. Moreover, recent studies based on the conformal field theory [3, 4] and
the bosonization method [5] have made it possible to calculate critical exponents for various
correlation functions of the 1D Hubbard model precisely, and have clarified the universality
class of the system as the Tomonaga–Luttinger liquid.

In the Hubbard model, physical quantities concerning the charge degrees of freedom, as
well as the spin degrees of freedom, exhibit characteristic features. For example, in the 1D
case, it has been shown that the charge susceptibility exhibits a divergence behaviour in the
vicinity of the Mott insulating phase, and this behaviour is considered to be brought about
by the Coulomb repulsion combined with the lattice structure [6]. In fact, the divergence
behaviour of the charge susceptibility near the Mott insulating phase is also seen in the
two-dimensional (2D) Hubbard model on a square lattice [7]. In this paper, we calculate
the elementary excitations for the 1D Hubbard model at finite temperatures, laying stress on
the charge excitation in the half-filled and near the half-filled cases. The formulation for the
elementary excitations at finite temperatures is based on the method of Yang and Yang [8].
It is worth noting that in the Kondo problem, the elementary excitation spectrums at finite
temperatures show behaviours characteristic of the local correlation effect in the system [9].
In section 2, we summarize the thermodynamic Bethe ansatz method for the 1D Hubbard
model developed by Takahashi [10]. In section 3, we formulate the elementary excitations
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for the charge and the spin degrees of freedom. Numerical results for the dispersion curves
and the excitation spectrums are presented in this section. Section 4 is devoted to the
summary of this paper.

2. Bethe ansatz equations at finite temperatures

We consider the 1D Hubbard Hamiltonian,

H = −t
∑
〈i,j〉,σ

c
†
iσ cjσ + 4U

∑
i

ni↑ni↓ − µ0H
∑
i

(ni↑ − ni↓) (1)

whereniσ = c†iσ ciσ . In the following, we uset as a unit of the energy. In the Bethe ansatz
method, the wavefunction for the many-body state is obtained as a superposition of the
plane wave. On applying the periodic boundary condition, the basic algebraic equations of
this model are obtained with the use of rapiditieskj and3α concerning the charge and the
spin degrees of freedom, respectively [1],

exp(ikjNa) =
M∏
α=1

sinkj −3α + iU

sinkj −3α − iU
(2)

N∏
j=1

3α − sinkj + iU

3α − sinkj − iU
= −

M∏
β=1

3α −3β + i2U

3α −3β − i2U
(3)

whereNa, N andM are the numbers of sites, electrons and down spins, respectively. While
rapidities are all real in the ground state [1], complex rapidities are introduced in order to
describe excited states at finite temperatures [10]. The complex spin rapidities are given by
two sets of the series which are called string solutions:

λn,jα = λnα + i(n+ 1− 2j)U

(n = 1, 2, . . . ; j = 1, 2, . . . , n) (α = 1, 2, . . . ,M ′n) (4)

3n,j
α = 3n

α + i(n+ 1− 2j)U

(n = 1, 2, . . . ; j = 1, 2, . . . , n) (α = 1, 2, . . . ,Mn). (5)

HereM ′n(Mn) is the number ofλnα(3
n
α). The complex charge rapidities{kn,lα }(l = 1, . . . ,2n)

are related to one of the sets of the complex spin rapidities as

kn,1α = π − sin−1(λnα + inU) (6)

kn,2jα = sin−1[λnα + i(n− 2j)U ] kn,2j+1
α = π − kn,2jα (j = 1, 2, . . . , n− 1) (7)

kn,2nα = π − sin−1(λnα − inU). (8)

In the description of the complex rapidities the corrections of O(exp(−δNa)) or
O(exp(−δN)) (δ a positive number) are included, but they vanish in the thermodynamic
limit. The real parts of these rapidities and the real charge rapiditieskj (j = 1, 2, . . . , N −
2M ′) satisfy the following equations:

kjNa = 2πIj −
∞∑
n=1

[ Mn∑
α=1

θ

(
sinkj −3n

α

nU

)
+

M ′n∑
α=1

θ

(
sinkj − λnα

nU

)]
(9)

Na[sin−1(λnα + inU)+ sin−1(λnα − inU)] = 2πKn
α +

N−2M ′∑
j=1

θ

(
λnα − sinkj

nU

)
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+
∞∑
m=1

M ′m∑
β=1

2nm

(
λnα − λmβ
U

)
(10)

N−2M ′∑
j=1

θ

(
3n
α − sinkj
nU

)
= 2πJnα +

∞∑
m=1

Mm∑
β=1

2nm

(
3n
α −3m

β

U

)
(11)

whereM ′ =∑∞n=1 nM
′
n and

θ(x) = 2 tan−1 x (12)

2nm(x) =



θ

(
x

n+m
)
+ 2θ

(
x

n+m− 2

)
+ · · ·

· · · + 2θ

(
x

|n−m| + 2

)
+ θ

(
x

|n−m|
)

(n 6= m)

θ
( x

2n

)
+ 2θ

(
x

2n− 2

)
+ · · · + 2θ

(x
2

)
(n = m).

(13)

Quantum numbersIj , Kn
α andJ nα specifykj , λnα and3n

α, respectively. The total energy and
the total momentum of the system are given by

E =
N−2M ′∑
j=1

(−2 coskj − µ0H)+
∞∑
n=1

M ′n∑
α=1

4Re
√

1− (λnα − inU)2+ 2µ0H

∞∑
n=1

nMn (14)

P = 2π

Na

( N−2M ′∑
j=1

Ij +
∞∑
n=1

Mn∑
α=1

J nα −
∞∑
n=1

M ′n∑
α=1

Kn
α

)
+
∞∑
n=1

(n+ 1)M ′nπ. (15)

In the thermodynamic limit, equations (9)–(11) are reduced to the set of the following
integral equations:

1

2π
= ρ(k)+ ρh(k)− cosk

∞∑
n=1

∫ ∞
−∞

d3Fn(sink −3)[σn(3)+ σ ′n(3)] (16)

1

π
Re

1√
1− (3− inU)2

−
∫ π

−π
dkFn(3− sink)ρ(k) = σ ′hn (3)+

∞∑
m=1

Anm(3) ∗ σ ′m(3)

(17)∫ π

−π
dkFn(3− sink)ρ(k) = σhn (3)+

∞∑
m=1

Anm(3) ∗ σm(3) (18)

whereρ(k), σ ′n(3) andσn(3)(ρh(k), σ ′hn (3) andσhn (3)) are the distribution functions for
the particle(hole) states ofkj , λnα and3n

α, and an asterisk denotes convolution.Fn(x) and
Anm(x) are defined as

Fn(x) = 1

π

nU

x2+ (nU)2 (19)

Anm(x) = δnmδ(x)+ 1

2π

d

dx
2nm

( x
U

)
. (20)

At temperatureT (kB = 1), the distribution functions at thermal equilibrium must minimize
the thermodynamic potential� = E − T S − µN [10], whereµ is the chemical potential.
From the conditionδ� = 0 the following equations are derived:

κ(k)

T
= −2 cosk − µ0H − µ

T
+
∞∑
n=1

∫ ∞
−∞

d3Fn(sink −3)
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×{ln[1+ exp(−ε′n(3)/T )] − ln[1+ exp(−εn(3)/T )]} (21)

ln[1+ exp(ε′n(3)/T )] =
4Re

√
1− (3− inU)2− 2nµ

T

−
∫ π

−π
dk coskFn(3− sink) ln[1+ exp(−κ(k)/T )]

+
∞∑
m=1

Anm(3) ∗ ln[1+ exp(−ε′m(3)/T )] (22)

ln[1+ exp(εn(3)/T )] = 2nµ0H

T
−
∫ π

−π
dk coskFn(3− sink) ln[1+ exp(−κ(k)/T )]

+
∞∑
m=1

Anm(3) ∗ ln[1+ exp(−εm(3)/T )]. (23)

Hereκ(k), ε′n(3) andεn(3) are the pseudo-energies defined as

κ(k) ≡ T ln[ρh(k)/ρ(k)] ε′n(3) ≡ T ln[σ ′hn (3)/σ
′
1(3)]

and

εn(3) ≡ T ln[σhn (3)/σn(3)]

respectively.
The equations presented above are the Bethe ansatz solutions of the 1D Hubbard model

at finite temperatures, which were given by Takahashi [10]. Using these results, we derive
the expression for the elementary excitations at finite temperatures and give numerical results
in the next section.

3. Elementary excitations at finite temperatures

In order to investigate the elementary excitations at finite temperatures, let us recall here
that the ground state is described by real charge and spin rapidities [1], and that the free-
energy functional at thermal equilibrium is expressed only by real rapidities [10]. Therefore,
it is probable that low-temperature properties of the system are mainly controlled by real
rapidities. Based on these observations, the elementary excitations at finite temperatures
are considered to be obtained by removing one of real rapidities, with the total electron
number being fixed. In this section, we derive the formulae for the shifts of the energy
and the momentum due to the excitation, following the method of Yang and Yang [8]. The
formulation is made for the charge excitation in the cases ofN/Na < 1 andN/Na = 1,
and also for the spin excitation. Based on the derived formulae, numerical results for the
dispersion curves and the excitation spectrums are presented.

3.1. Charge excitations

3.1.1. N/Na < 1. First, we consider the case ofN/Na < 1. As mentioned above,
we insert a hole into the real charge rapidity at a valuekh or the corresponding quantum
numberIh, and add a particle to the real charge rapidity atkp or Ip, other quantum numbers
remaining unchanged. This procedure corresponds to the particle–hole excitation. Because
of this procedure, the distribution of rapidities is rearranged through the phase shift described
by the equations (9)–(11) (the back-flow effect). After the excitation, the basic equations (9)–
(11) are expressed in terms of{k′j }, {λn

′
α } and{3n′

α }, where{k′j }, {λn
′
α } and{3n′

α } are the new
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sets of rapidities. We write the shifts of rapidities as

1

Na
1kj = k′j − kj (24)

1

Na
1λnα = λn

′
α − λnα (25)

1

Na
13n

α = 3n′
α −3n

α. (26)

Since the shifts of rapidities(1/Na)1kj , (1/Na)1λnα and(1/Na)13n
α are sufficiently small,

we take them into account to only lowest order in the basic equations. Expanding basic
equations in terms of the shifts of rapidities, we obtain the following equations:

1

2π
1kj = − 1

Na

∞∑
n=1

[ Mn∑
α=1

Fn(sinkj −3n
α) · (coskj1kj −13n

α)+
M ′n∑
α=1

Fn(sinkj − λnα)

×(coskj1kj −1λnα)
]

(27)

1

π
Re

1√
1− (λnα − inU)2

1λnα =
1

Na

N−2M ′∑
j=1

Fn(λ
n
α − sinkj ) · (1λnα − coskj1kj )

+ 1

Na

∞∑
m=1

M ′m∑
β=1

Bnm(λ
n
α − λmβ ) · (1λnα −1λmβ )+

1

2π

[
θ

(
λnα − sinkp

nU

)
−θ

(
λnα − sinkh

nU

)]
(28)

1

Na

N−2M ′∑
j=1

Fn(3
n
α − sinkj ) · (13n

α − coskj1kj ) = 1

Na

∞∑
m=1

Mm∑
β=1

Bnm(3
n
α −3m

β )

×(13n
α −13m

β )−
1

2π

[
θ

(
3n
α − sinkp
nU

)
− θ

(
3n
α − sinkh
nU

)]
(29)

whereBnm(x) ≡ Anm(x)− δnmδ(x). In the thermodynamic limit, the set of coupled integral
equations is derived:

[ρ(k)+ ρh(k)]1k(k) =
∞∑
n=1

∫ ∞
−∞

d3Fn(sink −3)[σn(3)13n(3)+ σ ′n(3)1λn(3)] (30)

σ ′hn (3)1λn(3) =−
∫ π

−π
dk coskFn(3−sink)ρ(k)1k(k)−

∞∑
m=1

Anm(3) ∗ [σ ′m(3)1λm(3)]

+ 1

2π

[
θ

(
3− sinkp

nU

)
− θ

(
3− sinkh

nU

)]
(31)

σhn (3)13n(3) =
∫ π

−π
dk coskFn(3− sink)ρ(k)1k(k)−

∞∑
m=1

Anm(3) ∗ [σm(3)13m(3)]

− 1

2π

[
θ

(
3− sinkp

nU

)
− θ

(
3− sinkh

nU

)]
. (32)

In this way, the shifts of rapidities due to the back-flow effect are determined completely
by the above set of integral equations.
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Now we can calculate the energy increment associated with the elementary excitation.
The excitation energy is given by the sum of the bare energy change and the energy change
due to the back-flow effect:

1E
(
kp, kh

) = −2 coskp + 2 coskh +
∫ π

−π
dk ρ(k)1k(k)2 sink

+
∞∑
n=1

∫ ∞
−∞

d3σ ′n(3)1λn(3)
[

d

d3
4Re

√
1− (3− inU)2

]
. (33)

Differentiating the equations (21)–(23) with respect to rapidities and substituting them into
the expression (33), we obtain

1E(kp, kh) = −2 coskp + 2 coskh +
∞∑
n=1

∫ ∞
−∞

d3

{
σ ′hn (3)1λn(3)

+
∫ π

−π
dk coskFn(3− sink)ρ(k)1k(k)+

∞∑
m=1

Anm(3) ∗ [σ ′m(3)1λm(3)]
}

× 1

1+ exp(ε′n(3)/T )
dε′n(3)

d3
+
∞∑
n=1

∫ ∞
−∞

d3

{
σhn (3)13n(3)

−
∫ π

−π
dk coskFn(3− sink)ρ(k)1k(k)+

∞∑
m=1

Anm(3) ∗ [σm(3)13m(3)]

}
× 1

1+ exp(εn(3)/T )

dεn(3)

d3
+
∫ π

−π
dk

{
[ρ(k)+ ρ(k)h]1k(k)

−
∞∑
n=1

∫ ∞
−∞

d3Fn(sink −3)[σn(3)13n(3)+ σ ′n(3)1λn(3)]
}

× 1

1+ exp(κ(k)/T )

dκ(k)

dk
. (34)

Using equations (30)–(32), we find finally the simple formula for the excitation energy
renormalized by the back-flow effect as

1E(kp, kh) = κ(kp)− κ(kh). (35)

It is noted that the excitation energy can be expressed by using only the pseudo-energy for
the real charge rapidity at thermal equilibrium.

The total momentum after the particle–hole excitation is evaluated as

P ′ = 2π

Na

[( N−2M ′∑
j=1

I ′j − I ′h + I ′p
)
+
∞∑
n=1

Mn∑
α=1

J n
′

α −
∞∑
n=1

M ′n∑
α=1

Kn′
α

]
+
∞∑
n=1

(n+ 1)M ′nπ (36)

where {I ′j }, {Kn′
α } and {J n′α } are the new sets of the quantum numbers, which satisfy the

relationsI ′j = Ij (Ij 6= Ip, Ij 6= Ih), Kn′
α = Kn

α andJ n
′

α = J nα . Subtracting (15) from (36),
we derive the shift of the total momentum due to the elementary excitation as follows,

1P(Ip, Ih) = 2π

Na
(Ip − Ih). (37)

In the thermodynamic limit, (37) can be written as

1P(kp, kh) = pc(kp)− pc(kh) (38)

pc(k) = k

2π
+ 1

2π

∞∑
n=1

∫ ∞
−∞

d3

[
θ

(
sink −3
nU

)
σn(3)+ θ

(
sink −3
nU

)
σ ′n(3)

]
. (39)
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Figure 1. Dispersion relations of the charge excitation forN/Na = 0.9 andU = 2.0 with kp
being fixed atQ, whereQ is the cut-off at zero temperature.

As seen in (38), the shift of the total momentum is also written in a simple form by using
pc(k). This expression is recast into the following formula:

1P(kp, kh) = 2π
∫ kp

kh

dk[ρ(k)+ ρh(k)]. (40)

Using (35) and (40), the dispersion curves for the model at finite temperatures are
obtained. At zero temperature, the real charge rapidity occupies the region [−Q,Q] fully,
and the lower bound of the dispersion curve is obtained whenkp is fixed atQ or −Q. At
finite temperatures, however, a clear cut-off of the rapidity does not exist because particles
and holes are distributed randomly. Therefore, we have to determine the position ofkp in
order to obtain the energy of the elementary excitation. In the previous papers for other
models [9, 11, 12], the excitation energy was defined as1E(3) = ε(−∞) − ε(3), where
ε(3) is the pseudo-energy for the rapidity3 and3 = −∞ corresponds to the cut-off at
zero temperature. As a reference, we have calculated the dispersion relations of the charge
excitation forN/Na < 1, takingkp askp = Q. Numerical results are shown in figure 1 in
the case ofU = 2.0.

In the present calculation, however, we make more plausible choice: we takekp as
Q(T ) which satisfiesκ(Q(T )) = 0. In the limit of T → 0, the pseudo-energyκ(k)
satisfiesκ(Q) = 0. We extend this relation between the pseudo-energy and the cut-off to
the case of finite temperatures. It should be noted that for both choices ofkp, the excitation
energy and the shift of the total momentum in the limit ofT → 0 coincide with those
at zero temperature. In figure 2, we show the temperature dependence of the dispersion
curves in the case ofN/Na = 0.9. In these figures,ε ≡ 1E(kp, k) = κ(kp) − κ(k)
and p ≡ 1P(kp, k) = 2π

∫ kp
k

dk′ [ρ(k′) + ρh(k′)] with fixed kp, and k(>0) denoteskh.
Numerical results are shown forU = 0.5 and 2.0 in the case ofH = 0. Note that for
U = 2.0 the system can be regarded as being in the strong coupling regime, because the
temperature dependence of the spin susceptibility of the 1D Hubbard model is fairly well
described by the 1D Heisenberg antiferromagnet, in the case ofU = 2.0 and 3.0 [13]. For
U = 0.5, the dispersion curve seems to be linear in the vicinity ofp = 0 and has little
temperature dependence. On the other hand, forU = 2.0, the velocity nearp = 0 tends to
decrease and the maximum of the excitation energy is enhanced slightly, as temperature is
increased.
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(a)

(b)

Figure 2. Dispersion relations of the charge excitation atN/Na = 0.9 for several values of
temperatureT . The results for (a)U = 0.5 and (b)U = 2.0 are shown.

We now introduce the spectral density for the charge excitation as a function of the
excitation energy. This is given by counting the number of particle states in a given range
of the excitation energy [ε, ε + dε],

Dc(ε(k)) = 2
ρ(k)

|dε(k)/dk| . (41)

In order to see the temperature dependence of the spectral density for the charge excitation
clearly, it is helpful to introduce thewhole excitation spectrum

Dwhole
c (ε(k)) = 2

ρ(k)+ ρh(k)
|dε(k)/dk| (42)

which is obtained by counting the number of both particle and hole states in a range of the
excitation energy [ε, ε + dε]. These spectral densities satisfy the relation

Dc(ε(k)) = 1

exp[(−ε(k)+ κ(kp))/T ] + 1
Dwhole
c (ε(k)). (43)
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(a)

(b)

Figure 3. Charge excitation spectrumsDc(ε) andDwhole
c (ε) defined in the equations (41) and

(42) for N/Na = 0.9. The results in the case of (a)U = 0.5 and (b)U = 2.0 are shown for
the same values ofT as figure 2.

In figure 3, we show the results forDc(ε) and Dwhole
c (ε) in the case ofH = 0. For

both U = 0.5 and 2.0, the whole excitation spectrum is nearly identical. Therefore, the
temperature dependence of the excitation spectrumDc(ε) in the low-energy region is caused
mainly by that of the ‘Fermi distribution function’ in (43).

In the present paper, we could not make a definite choice for the position of the rapidity
being added. This difficulty is inherent in the calculation of the excitation spectrum using
the method of Yang and Yang. We leave this problem for future investigation.

3.1.2.N/Na = 1 (half-filled case). At zero temperature, we cannot treat the particle–hole
excitation within the real charge rapidity in the half-filled case, since the available region
[−π, π ] is occupied fully. This is due to the fact that real charge rapidities can describe
only the excitation within the lower band. In order to treat a particle excitation to the upper
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band, we should introduce a two-string solution for the charge rapidity [14, 15]. In this way,
the particle–hole excitation is formulated for the charge excitation in the half-filled case. It
is noted that in this treatment, the total electron number is conserved. We will extend the
formulation for the particle–hole excitation to the case of finite temperatures.

Now we remove the real rapiditieskh1 andkh2 and add a pair of complex charge rapidity
k±(k± = π − sin−1(λp ± iU)). In the thermodynamic limit, the equations for the shifts of
rapidities are obtained as follows:

[ρ(k)+ ρh(k)]1k(k) =
∞∑
n=1

∫ ∞
−∞

d3Fn(sink −3)[σn(3)13n(3)+ σ ′n(3)1λn(3)]

− 1

2π
θ

(
sink − λp

U

)
(44)

σ ′hn (3)1λn(3) = −
∫ π

−π
dk coskFn(3− sink)ρ(k)1k(k)

−
∞∑
m=1

Anm(3) ∗ [σ ′m(3)1λm(3)] +
1

2π
2n1

(
3− λp
U

)
− 1

2π

[
θ

(
3− sinkh1

nU

)
+ θ

(
3− sinkh2

nU

)]
(45)

σhn (3)13n(3) =
∫ π

−π
dk coskFn(3− sink)ρ(k)1k(k)−

∞∑
m=1

Anm(3) ∗ [σm(3)13m(3)]

+ 1

2π

[
θ

(
3− sinkh1

nU

)
+ θ

(
3− sinkh2

nU

)]
. (46)

After the calculation similar to the case ofN/Na < 1, the excitation energy is derived as

1E(λp, kh1, kh2) = ε′1(λp)− κ(kh1)− κ(kh2)+ C(T ) (47)

whereC(T ) = −ε′1(±∞)+ T {2 ln 2− 2
∑∞

n=1 ln[1+ exp(−εn(±∞)/T )]}.
In figure 4 we show the numerical results forDc(ε) in the half-filled case. HereH = 0

andλp is fixed at±∞ to minimize the excitation energy. In this case, the excitation energy
is written simply as1E(kh1, kh2) = −κ(kh1) − κ(kh2), and we definedε as ε ≡ −κ(k).
ForU = 0.5, when temperature is increased, the spectrum shifts monotonously to the low-
energy side and as a consequence the excitation gap disappears. In contrast, forU = 2.0
the width of the energy gap is kept nearly unchanged. The results imply that the charge
excitation in the case ofN/Na = 1 is affected considerably by the strength of the Coulomb
interaction.

3.2. Spin excitations

Next, we consider the spin excitation. As mentioned before, the spin excitation is given by
inserting a hole into the real spin rapidity at3h or Jh, and by adding a particle into the real
spin rapidity at3p or Jp. Expanding equations (9)–(11) in terms of the shifts of rapidities,
we obtain the following set of equations for the shifts of rapidities:

[ρ(k)+ ρh(k)]1k(k) =
∞∑
n=1

∫ ∞
−∞

d3Fn(sink −3)[σn(3)13n(3)+ σ ′n(3)1λn(3)]

− 1

2π

[
θ

(
sink −3p

U

)
− θ

(
sink −3h

U

)]
(48)
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(a) (b)

Figure 4. Charge excitation spectrumsDc(ε) in the half-filled case for (a)U = 0.5 and
(b) U = 2.0. Hereε = 0 corresponds to the centre of the energy gap.

σ ′hn (3)1λn(3) = −
∫ π

−π
dk coskFn(3− sink)ρ(k)1k(k)

−
∞∑
m=1

Anm(3) ∗ [σ ′m(3)1λm(3)] (49)

σhn (3)13n(3) =
∫ π

−π
dk coskFn(3− sink)ρ(k)1k(k)

−
∞∑
m=1

Anm(3) ∗ [σm(3)13m(3)]

+ 1

2π

[
2n1

(
3−3p
U

)
−2n1

(
3−3h

U

)]
. (50)

The excitation energy is given only by the contribution of the back-flow effect as

1E(3p,3h) =
∫ π

−π
dk ρ(k)1k(k)2 sink +

∞∑
n=1

∫ ∞
−∞

d3σ ′n(3)1λn(3)

×
[

d

d3
4Re

√
1− (3− inU)2

]
. (51)

Using the differentiation of equations (21)–(23) with respect to rapidities and equations (48)–
(50), we can recast (51) into the simple formula with the use of the pseudo-energy of the
real spin rapidity at thermal equilibrium,

1E(3p,3h) = ε1(3p)− ε1(3h). (52)

In the thermodynamic limit, the shift of the total momentum due to the spin excitation
can be derived as

1K(3p,3h) = ps(3p)− ps(3h) (53)

ps(3) = 1

2π

∫ π

−π
dk θ

(
3− sink

U

)
ρ(k)− 1

2π

∞∑
m=1

∫ ∞
−∞

d3′21m

(
3−3′
U

)
σm(3

′) (54)



5848 A Tomiyama et al

Figure 5. Dispersion relations of the spin excitation with3p being fixed at∞, where3 = ∞
is the cut-off at zero temperature. HereN/Na = 0.9 andU = 2.0.

then as

1K(3p,3h) = 2π
∫ 3p

3h

d3 [σ1(3)+ σh1 (3)]. (55)

Note that1E(3p,3h) and1K(3p,3h) are determined only by real spin rapidities3p
and3h.

Using (52) and (55), we obtain the dispersion curve for the spin excitation at finite
temperatures. First, in figure 5, we show the dispersion curves for the spin excitation in
the case where3p is fixed at the cut-off of the spin rapidity atT = 0. The results agree
qualitatively with those of theS = 1/2 1D Heisenberg antiferromagnet at finite temperatures
obtained previously [11].

In the present calculation, we take3p asB(T ) which satisfiesε1(B(T )) = 0, because
ε1(3) satisfiesε1(B) = 0 (B is the cut-off of the spin rapidity at zero temperature)
in the limit of T → 0. In figure 6, numerical results are shown forU = 0.5 and
2.0 in the case ofH = 0. In the figures,ε ≡ 1E(3p,3) = ε1(3p) − ε1(3) and
p ≡ 1K(3p,3) = 2π

∫ 3p
3

d3′ [σ1(3
′) + σh1 (3′)] with 3p being fixed, and3(>0) is

3h. For bothU = 0.5 andU = 2.0, the maxima of the excitation energy and the shift of
the total momentum are reduced considerably with increasing temperature. The dispersion
curve of the spin excitation shows qualitatively the same behaviour irrespective of the value
of U andN/Na.

Similar to the case of the charge excitations, we define the spectral density for the spin
excitation as follows,

Ds(ε(3)) = 2
σ1(3)

|dε(3)/d3| . (56)

The whole excitation spectrum is given by

Dwhole
s (ε(3)) = 2

σ1(3)+ σh1 (3)
|dε(3)/d3| . (57)

It is easily seen thatDs(ε) and Dwhole
s (ε) fulfil the following relation: Ds(ε(3)) =

{exp[(−ε(3)+ ε1(3p))/T ]+1}−1Dwhole
s (ε(3)). In figure 7 we show the numerical results

for Ds(ε) andDwhole
s (ε) in the case ofH = 0. As inferred from the dispersion curve, the

width of the spectrum is reduced rapidly.
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(a)

(b)

(c)

Figure 6. Dispersion relations of the spin excitation. The results atN/Na = 0.9 are shown for
(a) U = 0.5 and (b)U = 2.0. The results in the half-filled case are shown forU = 2.0 (c).



5850 A Tomiyama et al

(a)

(b)

Figure 7. Spin excitation spectrumsDs(ε) andDwhole
s (ε) at N/Na = 0.9 for (a)U = 0.5 and

(b) U = 2.0.

4. Summary

We have investigated the elementary excitation for the 1D Hubbard model at finite
temperatures, applying the method developed by Yang and Yang. It has been shown that,
for both charge and spin excitations, the excitation energy can be described only by the
pseudo-energy of the real rapidity, and that the shift of the total momentum is written only
by using the distribution function of the real rapidity.

For both the charge and the spin degrees of freedom, the dispersion curves and the
density of states for the elementary excitation have been calculated numerically, in the
half-filled and near the half-filled cases.
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